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AN ADAPTIVE TECHNIQUE FOR ESTIMATING THE

ATMOSPHERIC DENSITY PROFILE DURING THE A. E. MISSION

P. Argentiero

ABSTRACT

This paper presents a technique for processing accelerometer data
obtained during the A. E. missions in order to estimate the atmos-
pheric density profile. A minimum variance, adaptive filter is
utilized. The trajectory of the probe and probe parameters are in
a consider mode where their estimates are unimproved but their
associated uncertainties are permitted an impact on filter behavior.
Simulations indicate that the technique is effective in estimating
a density profile to within a few percentage points.
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AN ADAPTIVE TECHNIQUE FOR ESTIMATING THE
ATMOSPHERIC DENSITY PROFILE DURING THE A. E. MISSION

INTRODUCTION

The AE-C, D, and E missions are designed to have nominal elliptical orbits with
perigee altitudes as low as 1.20km. At such altitudes the effect of aerodynamic
heating and atmospheric drag are considerable. This together with the fact that
the density profile in this portion of the atmosphere is not well known implies
that data generated by instruments on the probe must be utilized to rapidly and
accurately estimate atmospheric density as a function of altitude. Since telem-
etered accelerometer data will be available a certain well precedented procedure
is suggested. The ideal gas law and the hydrostatic equation can be utilized to
parameterize the density profile. The accelerometer data can then be processed
in a differential correction program and the parameters of the atmospheric model
can be estimated. The accuracy of the technique is limited by the fact that at
any given time the altitude, velocity, mass, cross sectional area, and drag coef-
ficient of the probe are all imperfectly known. Also the model used to parame-
terize the atmospheric density profile introduces further error since it is not a
completely accurate reflection of reality. The best way to test the accuracy of
the procedure is to construct a differential correction program for processing
accelerometer data, generate simulated accelerometer data from an A. E. type
trajectory using an atmospheric model different from what is assumed in the
program, add the proper random component to the accelerometer and trajectory
data, and determine how successful the procedure is in estimating the actual
density profile.

This paper is a report on the results of such a test. The atmospheric density
profile was parameterized by assuming that above a certain reference altitude
Ho, temperature is linear with altitude. This assumption together with the ideal
gas law and the hydrostatic equation permits one to obtain the density profile
above Ho as a function of the density and temperature at Ho and the slope of the
temperature profile above Ho. A recursive, minimum variance filter was de-
signed to process accelerometer data and estimate these three parameters. The
velocity and altitude of the probe at any given time along with mass, cross sec-
tional area, and drag coefficient are treated in the filter as so called "consider"
parameters. Thus the uncertainties of these parameters were permitted to have
an impact on filter performance but their estimates were left unimproved. An
adaptive feature was utilized to dynamically weight the accelerometer observa-
tions as a function of residuals. The addition of this feature was found to sub-
stantially improve the filter's performance.
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A numerical integration scheme was used to generate A. E. type trajectories
and the correct values of altitude, scalar velocity, and drag deceleration were
recorded for various time points. With the aid of a random number generator,
appropriate random components were added to these values as well as to probe
mass, cross sectional area, and drag coefficient. The resultant simulated data
was then processed by the filter and the estimated density profile was compared
to the correct density profile. The process was repeated for two different at-
mospheres. The first atmosphere possessed a linear temperature profile above
H0 as assumed by the filter atmospheric model. The results of this simulation
demonstrate the optimum accuracy to be expected from the procedure. The
second simulation was performed with an atmospheric model whose temperature
profile above Ho was highly non linear. This simulation provides the results to
be expected in the likely case that significant modeling errors are present.

Succeeding sections provide the mathematics of the atmospheric model and the
recursive filter followed by details of the simulations.

THE ATMOSPHERIC MODEL

Assume that above a reference altitude Ho, the Earth's atmosphere is spherically
symmetric and perfectly mixed. Then the ideal gas law permits us to write

P (h) = p(h) RT(h)/m (1)

where P (h), p (h), and T (h) are respectively hydrostatic pressure, temperature,
and density at altitude h. The symbols R and m respectively represent the ideal
gas constant and the average molecular mass. The hydrostatic equation provides

dP (h)
-= - gp (h) (2)dh

where g is the gravitational constant (assumed independent of h). From Equa-
tions 1 and 2, one can quickly derive

I dp(h) _ T(h)gm dT(h)
P(h) dh T ) R dh (3)

Differential Equation 3 can be solved for p (h), h > Ho, only if P0 = P (Ho) is
known and if T (h), h > Ho is given. It is assumed in this paper that T (h) is
linear above Ho with To = T (Ho) and S the slope of T (h). The parameters p0 ,
To and S serve to define p (h), h > Ho0 . To see how, integrate Equation 3 from
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Ho to some higher altitude h. This immediately yields

L p (h) 1 L FT (h) 1 gm h dh
Loge Po = -Log, TO -R- i~h) (4)

POe L ge T J R JH T (h)
0

and by taking advantage of the linear form of T (h) one can easily derive from
Equation 4,

To
p (h) = Po T + S(h- H) +gm/RS,h > H0 (5)

PROCESSING ACCELEROMETER DATA

The scalar acceleration due to drag experienced by a probe in an atmosphere is
given by

a = C V2 p (h) (6)

where p (h) is the atmospheric density at altitude h, V is the scalar velocity of
the probe and C is given by

C =-A CD/n (7)
2

where A is the cross sectional area of the probe, CD is the drag coefficient and
n is the probe mass. In the case of an A. E. probe, the drag coefficient is de-
termined analytically as a function of angle of attack by assuming the probe to
be a cylinder. The cross sectional area and mass are continuously monitored.
A tri-axial set of accelerometers are assumed to be installed on the probe.
These accelerometers measure three mutually perpendicular components of the
acceleration due to drag. The root mean square value of the three accelerom-
eters provides an observation of the scalar acceleration due to drag as symbol-
ized on the left side of Equation 6. Combining Equations 5 and 6 yields

FT 1 + +gm/RS

The altitude h and scalar velocity V of the probe at the instant an accelerometer
reading is obtained is assumed available as the output of an orbit determination
program. The problem can now be stated. Given a series of measurements of
the left side of Equation 8, determine the most efficient filter for processing
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these observations to obtain estimates of p0 , To0 , and S. The development of
such a filter must take into account uncertainties in C, h, and V as well as un-
certainties in the observations. For reasons of computational convenience it is
desired that the resultant filter be both linear and recursive. In order to utilize
results of linear filtering theory it is necessary to assume a linear approxima-
tion to Equation 8. Let T i be the time at which the ith accelerometer measure-
ment is taken. Then define the following symbols

X=LTo]' =[ CVTo i ](9)

where h i , V i , and Ci are respectively the values of h, V, and C of Equation 8
at time Ti . Equation 8 can be symbolized as

a
i

= f (X, Yi) (10)

where ai is the true acceleration due to drag at time T i . Let X n and Yi,n be
nominal estimates of X and Yi which may be thought of as the best estimates of
X and Yi immediately before the ith accelerometer measurement is processed.
A linear approximation to Equation 10 must take the form

a i = G1 X+G2 Yi +G 3 (11)

For our purposes it is not necessary to know a precise value for G3 . The esti-
mates used for matrices G1 and G2 are

a (X, Yi) a f(X, Yi)
G,= ,a G 2 = (12)a = ' Y G y 2 0=a Yi x=x Y =Y

At time T i , an estimate Yi of Yi is available with statistics.

Yi = Yi +i, E ( y i ) = 0, E(yi yiT) = Pi, E (Tyi ) = 0, i j (13)

Since the filter is assumed recursive, an estimate Xi_ 1 of X based on observa-
tions obtained previous to time Ti is available with statistics

Xi
1

= X + - E (i_ ) = , E (il, o 1) = Pi-. (14)

The matrices Pi and Pi_1 are presumed known. At time Ti a direct observation
ai of ai is obtained with statistics

a i = ai + v i + Ti , E ( v
i ) = E (r i ) = 0, E (vi r

i) = E (vi v
j
) = E (ri r

j
) = 0, i=j

E (v2) = Q, E (r 2 ) = R (15)i i i
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The random variable vi represents the inherent instrument noise and its variance
Q is considered as known. The random variable Ti represents observation noise
due to modeling errors such as inaccuracies in Equation 8 and errors caused by
the linearization symbolized by Equation 11. Its variance Ri is not known
a priori but is determined by the residuals of the filter in a way which will be
discussed later.

Since the filter is constrained to be linear, the estimate Xi is obtained by pro-
cessing observation ai must take the form

Xi = H1 ai+ H 2 X_ + H 3 Yi + H4 (16)

where H 1 , H H3 , and H4 are matrices of the proper dimension. At this point
the unbiasedness condition is imposed on the filter. In short, we insist that

E (Xi) = X (17)

Condition 17 has important consequences. By using Equations 11 through 15,
Equation 16 can be written as

(18)

Xi =-[H1 G1 +H2 ] X+ [H1 G2 +H 3] Yi+H1 G3 +H4 +H 1 vi + H 2 ai_ +H 3 'Yi

The only way to insure that Equation 17 is satisfied is to impose conditions

Hl G 1 + H2 = I, HI G2 + H3 = 0, H1 G3 + H4 = 0 (19)

Equations 19 permits us to represent matrices H2 , H3 , and H4 in terms of H I .

Equation 16 can then be written as

Xi' = Xi-1 + H [ai -G1 Xi _-G 2 Yi-G 3] (20)

The expression G1 Xi- 1 + G2 Yi + G3 may be viewed as the best estimate of a i
previous to processing Aai and assuming linear approximation 11 to Equation 10.
Thus Equation 20 represents the filter estimate ki as the sum of the previous
estimate Xi_l and the product of the vector HI by the difference between the ob-
served value ai of a i and the computed best estimate value of a i based on esti-
mates Xi-_ and Yi of X and Yi . This suggests that we define

aC = f(Xi I1 Yi) (21)

where the function "f" is defined by Equation 10 and is explicitly represented by
the right side of Equation 8. Equation 20 can be restated as

i = x-1 + HI (i - aci) (22)
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where H1 is an as yet undetermined vector. To determine H i we impose the so
called minimum variance condition on X i . Define

Pi= E (X - X) ( - X) ) (23)

Since the expected value of Xi. is X, Pi represents the covariance matrix of Xi .
We intend to choose a value for H1 which minimizes the trace of Pi. -The result,
ignoring the non linearity of Equation 21, will be a linear, unbiased, minimum
variance filter. Equations 18 and 19 permit one to write

Xi = X + Hl v
i

+ (I - H
I

G
l
) ai_l - Hl G2 yi + HI ri (24)

Hence

Pi = H, Q HQHT +H Ri HT + (I - H G )Pi (I- H G) T + H G2 Pi GT HT (25)

Define

51 = Q + Ri + G P 1 GT + G i G
(26)

62 = Pi-l GT

Then Equation 25 can be written as

Pi = 6H H -H 6 HT + Pi (27)

The problem now is to obtain the value of H 1 which minimizes the trace of Pi.
Assume the following change of variables

HI = 6 12 5 +A (28)

Then Equation 27 can be written

P. = P._ -6 6-1 6t + A AT (29)1 i-i 2 1 2 1

Since 61 is necessarily a. positive number, the trace of Pi is minimized when
A = 0 and the value of H 1 which provides a minimum variance filter is

H1 = 62 11 (30)
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And from Equations 29 and 30, the covariance matrix of the minimum variance
filter is

Pi = Pi-l - H 6IT (31)

The linear, unbiased, minimum variance, recursive filter can be given as

a f(X Y) (32a)

1 = Q+R+G P. GT + G2 Pi GT (32b)

62 = Pi-l GT (32c)

H = 62 6 (32d)

Xi = Xi- + H(na.) - (32e)

Pi = Pi- lH 2 (32f

Equations 32 are not complete since the value of R i is undetermined. A mode of
estimating R i as a function residuals will now be developed. The procedure will
again be a recursive one. Hence we assume that an estimate R._I of Ri-l was
obtained at time Ti l with statistics

Ri-l = Ri-l + Ki-l' E (Kjii) = 0, E (K- t) = i-l(33)

Assume further that the relationship between Ri and Ri-l is

R
i

= Ri
l

+ ri, E (r
i
) = 0, E (r) = (34)

Define the residual of the filter at time T i as

e. = - a. (35)

Using the linear approximation implied by Equation 11, Equation 35 can be
written

ei = vi + Ti - G i ai_1 - G2 Yi (36)

Next define X
i

as the variance of e
i

X i = E (e2) (37)
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Equations 36 and 37 lead to

Xi = Q + Ri + G1 Pi_ GT + G2 Pi GT (38)

Equations 34 and 38 can be viewed respectively as linear state and observation
equations. If an unbiased observation of Xi could be obtained it could then be
processed in a standard minimum variance fashion and a linear, unbiased, mini-
mum variance, recursive filter could be obtained for estimating R i . It can be
shown that the square of the residual ei obtained at time Ti is a chi-square ran-

2dom variable with expectation equal to Xi and variance equal to 2Xi . See [1 ] for
details. The number e2 can now be treated as an observation of Xi. Its variance
can be estimated from Equation 38 by substituting Ri_lfor R i on the right side.
The result is

E [(e)(e2)] - 2[Q+ Ri1 +G1 Pi-i G1 +G2 Pi G2 (39)

The resultant estimator for Ri is given by the following recursion relations

X = Q + Ri t +G P. G G2 Pi G (40a)

q = 2 X2 (40b)

z = i_ + o, (40c)

XC = z (z + q)-l (40d)

Ri = Ri + IC ( - X) (40e)

pi = z(1- fC)

Again the details can be found in [ 1 ]. It is instructive to see how Equations 40
interface with Equations 32 to form the complete filter. Given the mathematical
model of Equations 11 through 15 and given Xi_ i , Yi-1 , Pi-1 , Ri-1, Pi-l , the
minimum variance recursive filter is

a = f(X Y) (41a)

ei = ai - a (41 b)

x = Q + Ri_ 1 + G1 Pji 1 G + G2 i G (41c)

q= 2X 2

8



Z = pi-l + C

C = z (z + q)-l (41f)

R. = R. + C (e2 - X) (41g)

Zi= (I - JC) (41h)
~~~~T T ~~(41h)

61 = Q + Ri + G Pi1l G + G2 i (41i)

62 PPl GT (41j)
62 = Pi-1 1

H = 62 6' (41k)

X. = X. +H(a
i
-aC) (411)

P. Pi_. - H 62 (41m)1 1-1 2

The structure of this set of recursion relations may become clearer if one views
Equations 41 as a pair of interlocking minimum variance filters. The inner
filter defined by Equations c through h estimates observation noise variance Ri
and the outer filter defined by Equations a through b and i through m estimates
the state X. The outer filter passes the residual ei to the inner filter which
processes e2 as an observation and estimates Ri . The number Ri is then treated
by the outer filter as observation noise variance and an estimate Xi of X is
obtained.

The filter is adaptive in the sense that a few large residuals will cause the inner
filter to return a large estimate of observation noise variance with a resultant
downgrading of the impact of observations on the estimate. In this sense the
filter adapts its behavior to the presence of modeling errors.

An adaptive feature when used in this way amounts to a dynamic weighting scheme
which automatically downgrades the impact of data points which are associated
with large residuals. Thus the necessity of editing the data before processing is
eliminated. This is important with reference to real time applications. Notice
also that the filter defined by Equations 41 does not utilize the data to produce an
improvement in the estimate Yi of Yi . This means that the accelerometer data
is used to improve the estimate of the atmosphere rather than the actual trajec-
tory or the parameters associated with the probe. The uncertainties of the tra-
jectory and the probe parameters as given by covariance matrix Pi do, however,

9
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influence the estimate Xi of X. The parameters which define the vector Yi are
said to be in a "consider mode" rather than a "solved for" mode.

SIMULATIONS

Although the results of linear filtering theory were used to generate the results
of the previous section, the filter defined by recursion relations 41 is non linear.
Consequently it is not possible to evaluate its performance by ensemble studies.
If one is to know how such a filter will perform during the actual mission, simu-
lations must be performed. For the first simulation to be discussed a numerical
integrator was employed to generate an A. E. type trajectory. The atmospheric
model was obtained by assuming the ideal gas law and the hydrostatic equation
and a temperature profile which is a polygonal arc with four breakpoints the
highest of which at the reference altitude. Since for this model the temperature
above the reference altitude is linear with altitude, no modeling errors were
present for this simulation. At discrete time points, so called true values of
altitude, velocity, and acceleration due to drag were recorded. A random num-
ber generator was utilized to add appropriate random components to these num-
bers. Random components were also added to the values of the cross sectional
area, mass, and drag coefficient that were used to generate the true data. Re-
cursion relations 41 were translated into a computer program which processed
the simulated data to yield an estimate of the atmospheric density profile. The
performance of the filter was measured by the percentage error between the
estimated density and the actual density as a function of altitude.

The perigee altitude for the trajectory was 135 km. From 7 minutes before
perigee until 7 minutes after perigee, a total of 175 accelerometer measure-
ments were obtained. The uncertainty figures used in the simulations are pro-
vided in Table 1. The reference altitude was chosen at 100 km. For this esti-
mation technique it is necessary to begin with an a priori estimate of the
atmospheric density profile. For this simulation a very poor a priori estimate
was used. This was done for two reasons. First, the filter's performance
would not be very impressive if in order to obtain a good estimate of the density
profile it must begin with a good estimate. The second reason is that in pseudo-
real time applications such as this the question of the stability of the filter be-
comes important. If a poor a priori estimate is provided to a recursive filter
a frequent result is filter divergence and a new a priori estimate must be tried.
This involves a searching procedure which can become lengthy.

The results of the simulation are displayed in Figure 1 which is a plot of the
estimated density minus the true density divided by the true density and multiplied

10



Table 1

Standard Deviations Used in Simulation

Parameter Standard Deviation

Altitude 500 m

Velocity 4 m/sec

Accelerometer Reading 5 (10)-5 m/sec2

Probe Cross Sectional Area 0.16 m2

Probe Mass 6.5 kg

Probe Drag Coefficient 0.13

by 100. It is seen that between 130 km and 200 km the filter succeeds in esti-
mating the density with an average error of less than 2%. In the same region the
a priori estimate of the density profile would have introduced an average: error of
well over 600%.

In the simulation which produced Figure 1 the assumption that above the refer-
ence altitude temperature is linear is satisfied. During the actual mission this
is not likely to be the case. In fact present information [2 ] indicates that tem-
perature above 100 km is likely to possess a negative second derivative with
regard to altitude. This difficulty could be solved by modeling several break-
points above 100 km and solving for the extra slopes. But this leads to a more
complicated filter. It is interesting to observe how the present filter performs
in estimating the density profile of an atmosphere whose temperature profile is
not linear above the reference altitude. The second simulation discussed in this
paper was performed identically to the first with the exception that the atmos-
pheric model had six temperature breakpoints the last two of which were at
125 km and 160 km. The slopes were chosen so that the resulting temperature
profile resembled the curves shown in [2 ]. The results are shown in Figure 2
which can be interpreted in the same way as Figure 1. The average error be-
tween 130 km and 200 km has increased to about 3%. This suggests that an
atmospheric model more elaborate than what is used in the present filter may
not be necessary in order to adequately estimate the density profile. The same
simulations were completed without the adaptive feature. The average error.
between 130 km and 200 km for simulation one was about 3% and for simulation

11
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Figure 1. Percentage Error of Density Estimate versus
Altitude for First Simulation

2 about 4.5%. The adaptive feature appears to be well worth the added complex-
ity it introduces. This added complexity is not great as seen by the fact that
with the adaptive feature included the filter is capable of processing over 1,9 500
accelerometer readings per minute on a modern high speed computer.

CONC LUSIONS

Accelerometer data collected during the A. E. mission along with trajectory
data can be processed in order to yield an estimate of the atmospheric density
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Figure 2. Percentage Error of Density Estimate versus
Altitude for Second Simulation

profile that should be accurate to within a few percentage points. In this paper
the filter used to process accelerometer data was minimum variance, recursive,
and with an adaptive observation noise estimator. The altitude, velocity, and
probe parameters were in a consider mode where their estimates were unim-
proved but their associated uncertainties were permitted to have an impact on the
filter estimate. The atmospheric model used by the filter characterize the
density profile with just three parameters. This appears to be adequate since
simulations show that even when the modeling assumptions are seriously violated
the filter performs well. Simulations also show that the filter converges to a
good estimate even when the a priori estimate of the density profile is in error
by several hundred percentage points. The adaptive estimation of observation
was found to add substantially to the accuracy of the technique.

As designed the filter should be relatively insensitive to data dropouts and to
badly biased data points. Its speed should be adequate for real time applications
and its accuracy may be adequate for post flight analysis.
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